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ABSTRACT

Ex-mining lakes are known to have elevated metal levels from past mining activities, thus, consuming
fish originating from these lakes may pose potential health risks. The ability of fish to accumulate
metals from the surrounding environment raised public concern about the health risks posed
when consuming fish from former mining lakes. An investigation was carried out to quantify the
concentrations of iron (Fe), zinc (Zn), and lead (Pb) in the water and organs (gills and muscle) of
twenty Barbonymus sp. found in a former mining lake. Metal levels were measured using [CP-MS,
and the results obtained were compared with their respective standards. A comparable Fe>Zn>Pb

pattern was observed in the metal concentrations

of both samples. Although the concentration
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of Pb in the water samples surpassed the limit
of 0.166 mg/L, the levels of Fe and Zn were
within the range set by the National Lake Water
Quality Standards for Malaysia (NLWQS). The
concentrations of iron in the fish muscles and
gills are beyond the established thresholds set
by the World Health Organisation (WHO) and
Food and Agriculture Organisation (FAO). The
concentration of Zn in the fish gills exceeded
the FAO standard limit, and the levels of Pb in
both organs exceeded the acceptable limits set
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by all regulations, including the Malaysian Food Act 1983 (MFA). Notably, the incremental life
cancer risk (ILCR) for lead (Pb) was determined to be within the threshold limit, and the hazard
index (HI) of consuming Barbonymus sp. is less than 1, thus indicating a low potential health risk.

Keywords: Bioaccumulation, cancer risk, freshwater fish, heavy metals, non-cancer risk, target hazard
quotient

INTRODUCTION

The lakes in Sg. Galah, Kg. Gajah, Perak, Malaysia, are the result of tin ore mining
operations that lasted until 1984. Mining activities resulted in the formation of nine
interconnected man-made lakes that serve as habitats for various fish, aquatic plants,
and organisms. The lakes are now used as a source of income for local inland fishermen.
Fishermen rely on lake fish catches for food and income from selling the fish at markets
or to fishmongers.

Correspondingly, former mining lakes pose a significant trace metal risk. The
common trace metals linked to former mining water bodies are arsenic (As), iron (Fe),
cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb),
and zinc (Zn) (Baharim et al., 2022; Pistelli et al., 2017). These trace metals, if present
in high concentrations, may endanger human health either directly through ingestion
or dermal contact with the water (Koki et al., 2018; Low et al., 2016; Meduni¢ et al.,
2019) or indirectly through the consumption of fish caught from the lakes that may have
bioaccumulated the metals over time (Ashraf et al., 2012; Dalzochio et al., 2018; Saat et
al., 2014). Aside from the common metals found in lakes due to mining operations, the
lakes in the study area receive continuous metal input from agricultural activities in the
surrounding areas (Kamari et al., 2017; Okereafor et al., 2020). Runoffs containing metal
fertilisers and pesticide residues may increase metal contamination in lakes (Hembrom et
al., 2019; Miiller et al., 2020; Xie et al., 2016).

The assortment of macro and micronutrients that is present in fish renders it an
indisputable protein source in a well-balanced human diet (Liu et al., 2020; Mishra et al.,
2007; Tacon & Metian, 2013). Their ability to accumulate trace metals in their tissues,
however, has sparked worldwide concern, and the health risk posed by eating fish has been
called into question. The amount of trace metal accumulation in fish varies according to
metal, fish species, and tissues of concern (Petrovié et al., 2013). Sex, age, size, reproductive
cycle, swimming habits, eating behaviour, and habitat quality are all other factors that
influence metal uptake in fish.

Therefore, determining the levels of metal pollution in the ex-mining lake water and
fish is critical in order to analyse bioaccumulation events and predict the potential human
health risk caused by metal contamination, particularly to ensure food security when
consuming fish.
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The Cyprinidae family contains the most abundant genera and species of freshwater
fish in Malaysia (Kamarudin & Esa, 2009). The genus Barbonymus, formerly referred
to as Barbus, Barbodes, Puntius, or Systomus, can be classified into ten species: B.
altus, B. balleroides, B. collingwoodii, B. gonionotus, B. schawenfeldii, B. belinka, B.
mahakkamensis, B. platysoma, and B. sunieri (Batubara et al., 2021, Kottelat, 2013; Yang
etal., 2012; Zheng et al., 2016). Two species, the Barbonymus schawenfeldii (tinfoil barb)
and the Barbonymus gonionotus (Java barb), are frequently encountered in the freshwater
ecology of Malaysia (Kusmini et al., 2021; Rashid, 2014). These species have been primary
targets for inland fishers as food and ornamental fish due to the stunning colours of their
caudal and ventral fins (Eslamloo et al., 2012; Isa et al., 2012; Muchlisin et al., 2015).
The Malaysian Department of Fisheries (DOF, 2021) has confirmed that the total number
of Barbonymus sp. landings, particularly in the public water bodies in Perak, exhibited
an upward trend from 2013 to 2020, with a slight decrease in 2015. Barbonymus sp., or
pointedly to river carp and Javanese carp, was discovered in more ex-mining lakes, lakes,
and rivers in Perak alone in 2020 than in any other year before, with landings totalling up
to 352.77 tonnes that year. The Barbonymus sp. was chosen for this study because of its
large population and the local community’s keen attention.

The objectives of this present study are to:

(i) quantify the concentrations of trace metals in the water of the lake and in the
muscles and gills of Barbonymus sp., a regularly encountered fish species in this
lake.

(i1) investigate the relationship between metal concentrations in water and fish.

(iii) compare metal concentrations in water to the National Lake Water Quality Standard
(NLWQS) and in fish organs to the World Health Organisation (WHO), 2004, Food
and Agriculture Organisation (FAO), 1983, and Malaysian Food Act (MFA), 1983.

(iv) utilising the incremental life cancer risk (ILCR) for prospective cancer effects and
the hazard index (HI) for undesirable non-cancer effects to calculate the potential
harm to human health. The results provide an initial assessment of the magnitude
of trace metal contamination in the study region, as well as the possible risk to
human health from fish ingestion.

MATERIALS AND METHODS
Sampling Location

Figure 1 depicts Sg. Galah, Kg. Gajah’s public waters for inland fishermen, which consist
of nine interconnected lakes (Lake A — Lake I). The Kinta River near Lakes B, H, and |
supply the lakes’ water through three culverts. However, due to a lack of management in
the culvert areas, siltation, solid debris, and invasive macrophyte infestation significantly
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restrict the flow of water entering and exiting the lakes. As a result, except during river
flooding, which occurs once a year during an extraordinarily high rain event, the water
within the lakes is circulated between them. Furthermore, in recent years, the invasion of
invasive macrophytes, particularly water hyacinth (Pontederia crassipes), has become
more serious. This invasive weed covers 70% of the lake areas, preventing local inland
fishermen from fishing. Lake B was the only one still open for fishing. Because the lakes
are interconnected and have limited fishing access, this study assumes that one lake can
serve as a representative of all lakes due to the natural migration of fish between them.
Therefore, in this study, the sampling at Lake B is representative of all the lakes.

Kg. Gajah, Perak, Malaysia

/

¥

] 05 1 2Kiometers

Common waterways for inland fisherman

Figure 1. Ex-mining lakes of Sg. Galah, Kg. Gajah, Perak

Water Quality Determination and Water Sample Collection

Acid-washed bottles were used to collect water samples at three different locations, each
representing Lake B’s inlet, middle, and outlet. The samples were kept in a cool box at
4°C until further analysis. These samples were stored at a pH level below 2 in order to
minimise the incidence of precipitation, adsorption, or microbiological activity by the
addition of nitric acid (HNO;). The quality of the lake water was assessed using a handheld
multiparameter instrument model 556 (YSI, USA) to measure in-situ water quality
parameters such as pH, temperature, salinity, dissolved oxygen (DO), conductivity (EC),
and total dissolved solids (TDS); turbidity was assessed using a turbidity meter model
2100P (HACH, USA).
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Fish Sampling

Fish samples were collected using gill nets with the assistance of local inland fishermen,
washed with distilled water, and placed in separate polyethylene bags. The fish were
measured for length (mm) and weight (g), and fish with a similar average length and
weight were collected. Uneven numbers of fish in each species prevented species-level
identification. As a result, the fish samples will be reported as Barbonymus sp. samples.
Around 20 fish samples were collected. All the samples were stored at -20 °C until they
were further analysed.

Acid Digestion of the Water and Fish Samples

Prior to the analysis for trace metals using Inductively Coupled Plasma Mass Spectrometry
(ICP-MS), both the fish and water samples underwent acid digestion (USEPA, 1991).

The water samples were allowed to evaporate up to one-fourth of their original volume
after being boiled for 5-10 minutes on a hot plate through a 0.45 pum cellulose nitrate
membrane filter. The samples were subsequently filled to a volume of 10 mL by washing
the vials with a 2% HNO; solution to prevent any possibility of sample loss. The samples
were then placed in a refrigerator for two weeks to allow the metals to stabilise. Trace
metal concentrations were then analysed for Fe, Zn, and Pb in triplicate using ICP-MS
(USEPA, 1991).

The fish samples were pre-treated by being washed in distilled water, and the muscle
and liver were dried in an oven at 105°C for 24 hours. The fish bones and scales were
removed after drying, and the muscles and gills were collected. These fish parts were then
ground separately with a mortar and pestle before being dried in a crucible and stored
until further digestion.

Approximately 0.5 g of fish muscles and 0.2 g of fish gills, respectively, were added
with 5 mL of HNO; and, correspondingly, subjected to heating on a hot plate within a
digestive tube. The sample was then heated to 40°C for one minute and then gradually
heated to 100°C for 10 minutes until it reached the maximum temperature of 140°C. The
digestion continued for 3 hours at a temperature of 140°C. Before dilution with distilled
water, the digested residues were cooled and then filtered into a 50 mL centrifuge tube
using a 0.45 um nylon syringe filter. The filtrates were then refrigerated before ICP-MS
metal analysis of Fe, Zn, and Pb.

Trace Metal Analysis Using ICP-MS

The presence of trace metals Fe, Zn, and Pb in digested samples was determined using
ICP-MS. The trace metal levels were given in mg/kg dry weight for the fish samples and
mg/L for the water. The following standard concentrations were used: 10 ppb, 30 ppb, 50
ppb, 100 ppb, and 300 ppb to prepare the calibration curve.
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The per cent recovery for the fish extraction was calculated using the Equation 1

xX—Yy
z

Recovery (%) = [ ] X 100 [1]
Where x represents the average concentration of trace metal after a spike, y denotes the
average concentration of trace metal before a spike, and z represents the concentration of
trace metal that has been spiked.

The recovery percentages for Fe, Zn, and Pb were 81.8%, 82.8%, and 83.3%,
respectively, which constituted acceptable results.

Analytical blanks, consisting of reagents without the sample matrix, were processed
alongside the samples to monitor for potential contamination. Internal standards and
calibration curves with R? > 0.999 were used for instrument validation.

Bioconcentration Factor and Health Risk Assessment

The ratio of the fish’s steady-state metal ion concentrations to the concentration in the water
is known as the bioconcentration factor (BCF). BCF values were measured according to
Equation 2 proposed by Gobas et al., (2009):

Concentration of trace metal in fish (%)

BCF =

Concentration of trace metal in water (%) [2]
The BCF values were calculated to demonstrate the possibility of metal uptake by the
fish from the metal present in the lake water.
Finally, a health risk assessment was carried out. The potential health risks associated
with fish eating were calculated by utilising the data on trace metal concentration in the
fish and the anticipated consumption rate according to USEPA (2012) guidelines (Ashraf
etal., 2012; Azmi et al., 2019). Therefore, the consumption rate is predicted based on the
following assumptions:
» the ingestion rate (IR) of fish per day was 0.16 kg/day/person (FAO, 2009; Idriss
& Ahmad, 2015).

*  both men and women in Malaysia weigh an average of 62 kg for their adult body
weight (BW) ((Ahmad et al., 2016)).

* bioavailability and maximum absorption rate are at 100%.

The Target Hazard Quotient (THQ) was determined for the non-carcinogenic risk using
the Equation 3 (Khoshnood et al., 2014; Javed & Usmani, 2019):

EDI
Target Hazard Quotient (THQ) = m [3]
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To calculate the Estimated Daily Intake (EDI), the following equation (Equation 4)
was used:

[EFr X ED X IR X C]

Estimated Daily Intake (EDI) = ——pp 0

[4]

In the present study, the exposure frequency was set at 365 days per year and is denoted
as EFr. According to USEPA (2012), the ED stands for the exposure duration, which is set
at 70 years, to evaluate the impacts of the non-carcinogens. The IR represents the daily
fish ingestion rate assumed to be 0.16 kg/day/person for Malaysians. The C represents
the metal concentrations (mg/kg wet weight) in the muscles and gills of the fish samples.
The average body weight (BW) for Malaysian adults was set at 65 kg. The averaging time
(AT) for non-carcinogens was 365 days/year x ED. The oral reference dose (RfD) for each
metal is expressed as mg/kg/day (Table 1).

From the THQ of each metal, the Hazard Index was determined using the Equation 5.

Hazard Index (HI) = sumof THQs of every metals [5]

Values greater than 1 indicate that the exposure concentration exceeds the reference
concentration and may have significant negative consequences. Values less than 1 suggest
that the population being exposed is unlikely to suffer any detrimental health effects.

The Incremental Life Cancer Risk (ILCR) was calculated using the Equation 6
(Bacigalupo & Hale, 2012, Cao et al., 2015; Sultana et al., 2017), to determine the potential
target cancer risk for metals that exceeded the standards.

Incremental Life Cancer Risk (ILCR) = CDI X CSF [6]

The CDI, similar to EDI in the THQ calculation, estimates the average daily dose of
exposure to the metal carcinogen over a person’s lifetime and is measured as the chronic
daily intake of the chemical carcinogen in milligrams per kilogram of body weight per day.
CSF is an abbreviation for the cancer slope factor. Only Pb was measured for the ILCR
with the CSF of 8.5 x 10° mg/kg/day (Ahmad et al., 2016; USEPA, 1989; Orisakwe et al.,
2017). The ILCR value that ranges between 1.0 x 10°to 1.0 x 10* (around 1 probability
risk out of every 1,000,000 lifetime exposures) is recommended by USEPA (2012).

Table 1
Non-cancer oral reference dose (RfD) for the investigated metals
Element RfD (mg/kg/day) References
Fe 0.7000 Harmanescu et al., 2011
Zn 0.3000 Harmanescu et al., 2011; Korkmaz et al., 2017; USEPA, 1989
Pb 0.0035 Harmanescu et al., 2011; Orisakwe et al., 2017
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Data Analysis

All samples collected and metal analysis were conducted with a minimum of three replicates.
Descriptive statistics, including mean and standard deviation, were then determined. An
assessment was conducted to compare the water quality parameters and trace metal
concentrations with the National Lake Water Quality Standard (NLWQS) established by
the National Hydraulic Research Institute of Malaysia (NAHRIM) for Category C lakes,
which are designated for the conservation of aquatic life and biodiversity. The fish muscles
and gills were analysed for trace metal concentration in accordance with the guidelines
established by the World Health Organisation (WHO) in 2004, the Food and Agriculture
Organisation (FAO) in 1983, and the Malaysia Food Act (MFA) in 1983.

The correlation between trace metal levels in lake water, fish muscles and gills was
conducted using Pearson Product Moment Correlation in SPSS. Statistical analysis using
one-way ANOVA and Kruskal-Wallis tests was employed to ascertain the presence of any
statistical disparity between the sampling locations and water quality parameters.

RESULTS AND DISCUSSION
Water Quality Status of the Lake

The physicochemical properties of water are necessary for the monitoring of water quality
(Alonso Castillo et al., 2013; Javed et al., 2016). With the exception of pH and DO, the
physicochemical characteristics of the water samples shown in Table 2 were found to be
generally within Malaysia’s NLWQS permissible level for Category C lakes.

The pH of the limnetic zone of the lake was below pH 6.0, which was acidic and
slightly contaminated. These acidic conditions might have originated from the commonly
produced sulphide from the previous mining operations (Khalid et al., 2017). Higher or
lower pH influences the water taste as well as the damage to the fish skin and eyes (Dirisu
etal.,2016), while pH levels above 9.0 are similarly toxic to fish and other aquatic animals
(Stone et al., 2013; Waurts, 2003). Although the effect of pH does not directly correspond

Table 2

In-situ water quality parameters of the lake

Point Inlet Middle Outlet NLQX:‘ feg:)lﬁyHCR ™)
pH 6.77+0.03 3.89+0.50 6.57+0.01 6.0-9.0
EC (uS/cm) 161.33+0.49 159.30+0.70 167.50+0.00 2000
Salinity (%) 0.10+0.00 0.10+0.00 0.10+0.00 <1
Temperature (°C) 30.17+0.06 29.70+0.10 28.30+0.00 28
Turbidity (NTU) 8.98+0.14 9.30+0.41 11.43+0.61 70
DO (mg/L) 1.44+0.76 0.52+0.02 0.49+0.04 55-130
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to human health, the pH level does impact metal solubility and concentration (Miao et
al., 2021; Muhammad et al., 2011). Under slightly acidic circumstances (pH=5.0), higher
metal solubilities were detected, which rose when pH was held at 3.3 (Basak & Alagha,
2010; Chuan et al., 1996). Therefore, the acidic conditions of the water were deemed
unfavourable for the fish and may impact the lake ecosystem in the long run.

It was found that the dissolved oxygen (DO) levels in some areas of the lake were
below the ideal threshold established by the NLWQS. Low DO is common in ex-mining
ponds and lakes (Orji et al., 2013; Srivastava et al., 2009). Low DO values could be due to
a decrease in aquatic plant activity and a high level of organic material content (Breitburg
etal., 1997; Seitaj et al., 2017). Conversely, aquatic plants proliferate in the lake ecosystem
in the study area. Therefore, as the DO level measures the water’s assimilative capacity,
its depletion may also indicate pollution of biological or chemical origins (Chiejine et
al., 2015). Depleted DO levels threaten aquatic life as DO is crucial for the metabolism
of all aquatic organisms. If low DO conditions are prolonged in the study area, metal
contamination might not be the only concern.

EC, pH, and temperature were significantly different among the sampling points
(»<0.05). A drastic decrease in pH levels in the middle of the lake compared to the inlet
and outlet could be due to water flowing into the lake and passing over or through soil
or bedrock of different mineral compositions. In terms of EC, although the differences
between the level measured at the middle point and the two other points were significant,
the difference was less than 5%, hence it was still considered negligible. Equally, the
temperature measurements varied by around 1-2°C across each location and may have
been influenced by the shadowing caused by cloud cover on the lake surface during the
sampling process. In contrast, turbidity and dissolved oxygen levels measured for all points
were similar (p>0.05). Therefore, the condition for the whole lake was representative of
the values measured for both parameters.

Trace Metals in Water

Ex-mining waters are usually enriched with many elements. Determining the metal
concentrations in the lakes is essential for the risk assessment, especially if the water is
being used for human consumption. Table 3 shows the results of metal concentration that
are detected in the ex-mining lake for the inlet, middle, and outlet. It is noticeable that
there are differences between the Fe, Zn, and Pb concentrations in the inlet, middle, and
outlet (»p<0.05).

The major element in the mining area sediment and soil is usually Fe, which is present
in high concentrations compared to other trace metals because in most of the earth’s upper
and lower crust, Fe is one of the most abundant elements. This is true because Fe has the
most significant quantities of trace metals among the tested metals. Agriculture wastewater,
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Table 3

Trace metal concentration in water
Point Inlet Middle Outlet
Fe (mg/L) 0.80+12.02 0.57+15.11 0.64+22.74
Zn (mg/L) 0.10+0.28 0.53+0.34 0.18+2.47
Pb (mg/L) 0.13+0.38 0.18+0.01 0.19+0.09

prior mining and metallurgical operations that used zinc, as well as the use of commercial
products containing zinc, contributed as anthropogenic sources of zinc in the water
(ATSDR, 2005). Despite being lower than the guideline’s value, Zn was detected in high
concentration in the middle part of the lake as compared to the inlet and outlet (»<0.05).
This could be due to the poor water flow, whereby a higher concentration of pollutants
accumulated at the lake’s centre. Different flow rates can significantly affect water quality
parameters at any point in the lake (Pourfallah Koushali et al., 2021).

The comparison between metal concentrations in water and NLWQS is illustrated in
Figure 2. The metal levels in the lake were all within the NLWQS’s acceptable limits, except
for Pb at 0.121 mg/L. It was discovered that the water’s Pb levels were 33.3% higher than
the recommended limit. Possible sources of Pb could include leftover residual metals from
the mining activities (Paul, 2017) and agricultural runoff (Hamzah et al., 2018).

NLWQS standard (mg/L)
1.000 Fe (1
0.900 +
0.671
0.800 +

0.700 A

0.600 -

0.500 A

0.400 -

0.300 A

0.200 A

Trace metal concentrations (mg/L)

0.100 A

0.000

Fe Zn Pb

Figure 2. A comparison of the amount of trace metals in water with NLWQS
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The present study has focused on the analysis of Fe and Zn because they are essential
trace elements for biological functions but can pose a danger at elevated levels. Pb was
included as well due to its known toxicity and prevalence in anthropogenic environments,
especially in mining and industrial areas. On top of that, these metals are commonly
monitored in food safety and environmental health guidelines, making them relevant
indicators for risk assessment. However, the study acknowledged that the exclusion of other
highly toxic metals, such as As and Cd, limits its ability to fully assess the accumulative
health risk associated with metal contamination in the studied fish species. Therefore, future
studies should cover a larger range of metals to provide a more complete risk assessment.

Trace Metal Concentration in Fish and the Bioconcentration Factor

The mean concentration of trace metals in the muscles and gills of the Barbonymus
sp. followed a decreasing order of Fe > Zn > Pb. Metal concentrations observed in the
Barbonymus sp. gills and muscles were compared to WHO, FAO, and MFA guidelines in
Table 4. The Fe concentration in the muscles and gills of the Barbonymus sp. exceeded
the maximum limits set by the FAO and World Health Organisation. The concentration
of Pb recorded in this study also surpassed the safe range set by MFA, WHO, and FAO.
Zn concentration in the Barbonymus sp. gills was less than the MFA and FAO limits of
100 mg/kg and 30 mg/kg, respectively. However, the amount of Zn in the Barbonymus sp.
muscle was slightly greater than the FAO limit of 30 mg/kg, but this was still considered
to be low compared to the values in MFA.

Table 5 presents the bioconcentration factors (BCF) of trace metals computed for
the gills and muscles of Barbonymus sp. The BCF values among the studied trace metals
showed a descending trend of Fe>Zn>Pb for its gills and Zn>Fe>Pb for the muscles of the
Barbonymus sp. For both the gills and muscles of Barbonymus sp., the BCF values of all
studied metals were greater than 1.0, indicating the propensity to accumulate Fe, Pb, and
Zn from the water (Ju et al., 2017).

Metal accumulation in fish is a complex process influenced by both internal and
external variables (Griboff et al., 2017; Jabeen & Chaudhry, 2010). Metal bioavailability,
alkalinity, and ambient temperature are listed as external factors, whereas the feeding

Table 4
Trace metal concentrations in Barbonymus sp. (mg/kg)

Mean concentration

Metal WHO FAO MFA
Gills Muscles
Fe 267.66 132.76 43 2.5 -
Zn 18.65 31.85 - 30 100
Pb 9.82 10.19 1.5 0.5 2
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habit of the fish is an example of internal Table 5
Bioconcentration Factor (BCF) of trace metal in

factors affecting the metal accumulation in muscles and gills of Barbonymus sp.

fish. Major pathways for metals to enter the

Trace metals Organs BCF

fish are through surface exposure to water,

the food chain, and respiratory activity  Iron (Fe) Miillses ?zjzg
(Adegbola et al., 2021). , '

, o Gills 81.16

Gills are chosen in this study for  Lead (Pb) Muscles 8421

assessing metal accumulation, as they reflect . Gills 145.70

the metal pollution in water. Higher metals ~ Zinc (Zn) Muscles 248.83

can usually be found in the gills as they
are more exposed to the outer environment
(water) than the muscle (Bebianno et al., 2004; Rajeshkumar & Li, 2018). Moreover,
metal accumulation in gills is also due to the larger surface areas, which allow rapid metal
diffusion and metal ion exchange process from the surrounding aquatic environment
(Bebianno et al., 2004; El-Moselhy et al., 2014). Since muscles are frequently consumed
when people eat fish, it was chosen as the organ of concern, even though it is not thought
to be an active tissue in terms of accumulating trace metals (Agah et al., 2009; Aytekin et
al., 2019; Mohammad Ali et al., 2021). In this study, a statistically significant difference
was observed in Fe levels (p < 0.05), while no significant difference was found in Zn levels,
although the concentration in the muscles was somewhat higher (p < 0.05). However, there
were no statistically significant differences in Pb levels between the organs (p > 0.05).
Kalay et al. (1999) argued that after a contaminant has passed through the body’s defence
barrier, it will begin to accumulate in the fish muscle.

It should be emphasised that, due to sampling constraints, this study has grouped
all the fish samples under Barbonymus sp., which restricts the ability to generalise the
results because various species within the genus can exhibit differing physiological traits
and ecological niches. These changes may alter heavy metal uptake, accumulation, and
detoxification mechanisms, potentially resulting in variations in the observed patterns
(Cordeli et al., 2023; Oros, 2025). Future research on particular species within the genus
may provide more detailed insights into metal accumulation.

Human Health Risk Assessment

The rate of fish consumption reported in Malaysia (both for inland and marine sources) in
2016 was about 59 kg per capita, making it among the world’s highest demands for fish
(FAO, 2020). As the demand for fish rises, it becomes increasingly important to assess
the health risks connected with eating seafood that has been contaminated with trace
metals (Mansour et al., 2009). Table 6 shows the estimated possible health hazards that
are associated with consuming Barbonymus sp. that is polluted with Fe, Zn, and Pb from
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the former mining lake. All THQ values for  Table 6
Target Hazard Quotient (THQ) and Increment

. Lifetime Carcinogenic Risk (ILCR) by consuming
that the people consuming Barbonymus Barbonymus sp.

metals analysed were less than 1, indicating

sp. from the former mining lake were not

Risk Assessment
exposed to health risk (Ahmad & Sarah, Element THQ ILCR
2015; Lemly, 1996; Wang et al., 2005). Fo 00014 _
However, humans exposed to the effects of Zn 0.0004 B
the combination of more than one metal or Pb 0.0141 1.05E06

interactive effects can be higher (Li et al.,
2013).

Due to their toxicity and frequent association with ex-mining metal contamination,
the only carcinogenic risk for Pb was investigated pertaining to the consumption of
Barbonymus sp. (Ghnaya et al., 2015; Oke & Vermeulen, 2017). According to Silbergeld
et al. (2000), Pb poisoning can cause oxidative DNA damage, direct DNA damage, and
suppression of DNA synthesis. It can also produce reactive oxygen species. The US EPA’s
tolerable risk range, which is 1x10-6 to 1x10-4, is still within the increased lifetime cancer
risk (ILCR) for Pb, 1.05 x10-6, indicating negligible carcinogenic risk to the consumer
(USEPA, 1989). Nevertheless, Pb contamination remains particularly hazardous to
vulnerable populations such as children and pregnant women. Their physiological
differences, including rapid development in children and the unique vulnerability of
the fetus, can lead to greater sensitivity to Pb exposure, potentially amplifying the
long-term health consequences that are associated with even low-level contamination.
Children are known to be more affected by Pb than adults, even at a low concentration.
The risk to the infant from a pregnant woman should not be overlooked, as Pb can cross
the placental barrier, potentially causing harm to the developing neurological system of
the newborn (ATSDR, 2017). As a result, while the immediate carcinogenic risk to the
general population may appear to be small, the possibility of long-term harm, particularly
to the developing systems of children and the unborn, necessitates ongoing monitoring
and risk communication.

Other similar studies on the health risk assessment of fish from the ex-mining lake
also reported coinciding results. According to the evaluation by Ishak et al. (2020), while
the computed HQ levels for both Pb and Cd showed no known health risk to humans, it
is important to exercise caution, as there is still the possibility of other trace metals being
present in the lake which potentially endanger human health if not monitored.

It should be noted that vulnerable individuals who are susceptible to long-term trace
element exposure, such as children, pregnant or nursing mothers, and their infants, are not
taken into account in the human health risk assessment in this study (Javed & Usmani,
2019).
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CONCLUSION

This study sets out to evaluate the accumulation of trace metals in the populations of
Barbonymus sp. that are obtained from a former mining lake in Sg. Galah, Kg. Gajah,
Perak, Malaysia. Analysis revealed that the gills of Barbonymus sp. contained higher levels
of Fe, Zn, and Pb than the muscles. However, both organs exhibited the same pattern of Fe
> 7Zn > Pb accumulation. Iron (Fe) and lead (Pb) concentrations in the gills and muscles
of Barbonymus sp. surpassed many established thresholds. Nevertheless, according to the
findings of the health risk assessment, it can be concluded that the potential of harmful
effects (including cancer and non-cancerous conditions) on human health that are linked to
prolonged consumption of fish is still low. However, it is important to note that the present
study is based on samples that have been collected at a single time point, which may not
account for potential seasonal variations. Given the tropical environment of the study area
in Perak, future research should consider the potential impact of seasonal fluctuations in
precipitation and temperature on the solubility and bioavailability of metals in the lake, as
these factors could subsequently affect their accumulation patterns in fish tissues. Other
investigations on the movement of metals between different trophic levels or mediums are
necessary to enhance the obtained findings.
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